Displays values of trig functions on the unit circle
Download file: SpecialTrigValues.pg
DOCUMENT();
loadMacros('PGstandard.pl', 'PGML.pl', 'specialTrigValues.pl', 'PGcourse.pl');
Preamble
Load the specialTrigValues.pl
macro for the specialRadical and specialAngle
methods.
($d, $n) = random_coprime([ 2, 3, 4, 6 ], [ 1 .. 12 ]);
$r = random(2, 3);
$c = specialRadical("$r cos($n pi/$d)");
$s = specialRadical("$r sin($n pi/$d)");
$x = list_random(sqrt(3) / 2, sqrt(2) / 2, 1 / 2);
$a = specialAngle(arcsin($x));
Context("Complex");
$z = specialRadical("$r exp($n pi i/$d)");
Setup
The random_coprime function selects two random numbers
that are coprime from the list. This will give fractions with
denominators of 2, 3, 4 or 6.
The specialRadical function returns a
Formula in the form a sqrt(b) / c were
b and c come from a list of integers (defaults
to [1, 2, 3]).
Note that the specialRadical function has a complex form
as well.
The specialAngle function returns a MathObject in the
form a pi / c where a in an integer and
c comes from a list (defaults to
[1, 2, 3, 4, 6]).
BEGIN_PGML
Evaluate the following:
a) [`[$r] \cos([$n] \pi/[$d]) =`] [_]{$c}
b) [`[$r] \sin([$n] \pi/[$d]) =`] [_]{$s}
c) [`[$r] \exp([$n] \pi/[$d]) =`] [_]{$z}
d) [`\arcsin([$x]) =`] [_]{$a}
END_PGML
Statement
This is the problem statement in PGML.BEGIN_PGML_SOLUTION Solution explanation goes here. END_PGML_SOLUTION ENDDOCUMENT();
Solution
A solution should be provided here.