Parametric equations: vector parametric lines
Download file: VectorParametricLines.pg
DOCUMENT();
loadMacros(
'PGstandard.pl', 'PGML.pl',
'parserVectorUtils.pl', 'parserParametricLine.pl',
'PGcourse.pl'
);
Preamble
The parserVectorUtils.pl
macro is used which provides the non_zero_point3D,
non_zero_vector3D, and Line methods. The parserParametricLine.pl
macro is also used which provides the ParametricLine method
that gives a MathObject form of a parametric line.
Context('Vector')->variables->are(t => 'Real');
$P = non_zero_point3D(-9, 9);
$V = non_zero_vector3D(-9, 9);
$general = ParametricLine($P, $V);
$particular = Line($P, 2 * $V);
Setup
The non_zero_point3D method returns a nonzero
Point in the third dimension with random coordinates that
are the requested range. The accepted arguments (all of which are
optional) are the minimum coordinate value (default -5), maximum
coordinate value (default 5), and step size (default 1) respectively.
The non_zero_vector3D method is the same but returns a
Vector.
The ParametricLine method is used for a general
parameterization of the line.
The Line method is used for a particular parametrization
through the two points at t = 0 and t = 1.
BEGIN_PGML
a. Find any vector parametric equation for the line that goes through the points
[`[$P]`] and [`[@ Point($P + $V) @]`].
[`\vec{L}(t) =`] [_]{$general}{20}
b. Find a vector parametric equation for the line that goes through the point
[`[$P]`] when [`t = 0`] and the point [`[@ Point($P + 2 * $V) @]`] when
[`t = 1`].
[`\vec{L}(t) =`] [_]{$particular}{20}
END_PGML
Statement
This is the problem statement in PGML.BEGIN_PGML_SOLUTION Solution explanation goes here. END_PGML_SOLUTION ENDDOCUMENT();
Solution
A solution should be provided here.