Graphing a polar curve given by r=f(theta)
Download file: PolarGraph.pg
DOCUMENT(); loadMacros('PGstandard.pl', 'PGML.pl', 'PGtikz.pl', 'PGcourse.pl');
Preamble
We use PGtikz.pl
to generate the graph.
Context()->variables->are(t => 'Real'); $graph = createTikZImage(); $graph->tikzLibraries('arrows.meta'); $graph->BEGIN_TIKZ \tikzset{>={Stealth[scale=1.5]}} \filldraw[ draw=LightBlue, fill=white, rounded corners=10pt, thick,use as bounding box ] (-3.5,-3.5) rectangle (3.5,3.5); \draw[->] (-3.5,0) -- (3.5,0) node[above left,outer sep=3pt] {\(x\)}; \draw[->] (0,-3.5) -- (0,3.5) node[below right,outer sep=3pt] {\(y\)}; \draw[DarkGreen,very thick] plot [samples=250,domain=0:{2*pi},variable=\t] ({3*cos(5*\t r)*cos(\t r)},{3*cos(5*\t r)*sin(\t r)}); \fill[opacity=0.5,fill=DarkGreen] (0,0) -- plot[samples=250,domain={-pi/10}:{pi/10},variable=\t] ({3*cos(5*\t r)*cos(\t r)},{3*cos(5*\t r)*sin(\t r)}) -- cycle; END_TIKZ BEGIN_PGML Find the area enclosed by one petal of the rose curve [`r = f(\theta) = \cos(5\theta)`]. >>[@ image($graph, width => 300) @]*<< >>Graph of [`r = \cos(5\theta)`]<< Area = [_____]{'pi/20'} END_PGML
Setup
The package PGtikz.pl
is used to produce the curve. The plotting routine used in this way plots parametrically and we plot the polar curve parametrically.
BEGIN_PGML_SOLUTION Solution explanation goes here. END_PGML_SOLUTION ENDDOCUMENT();
Solution
A solution should be provided here.