Volume of solids of revolution
Download file: Volume3.pg
DOCUMENT(); loadMacros( 'PGstandard.pl', 'PGML.pl', 'unionTables.pl', 'answerHints.pl', 'weightedGrader.pl', 'PGcourse.pl' );
Preamble
These standard macros need to be loaded.Context()->variables->are(x => 'Real', dx => 'Real', y => 'Real', dy => 'Real'); $f = Compute('x'); $g = Compute('x^2'); $upper = Real('1'); $lower = Real('0'); $int = Compute('( pi x - pi x^2 ) dx'); $vol = Compute('pi'); # Display the answer blanks properly in different modes if ($displayMode eq 'TeX') { $integral = 'Volume = \(\displaystyle' . '\int_{' . ans_rule(4) . '}^{' . ans_rule(4) . '}' . ans_rule(30) . ' = ' . ans_rule(10) . '\)'; } else { $integral = BeginTable(center => 0) . Row( [ 'Volume = \(\displaystyle\int\)', ans_rule(4) . $BR . $BR . ans_rule(4), ans_rule(30) . $SPACE . ' = ' . $SPACE . ans_rule(10), ], separation => 2 ) . EndTable(); }
Setup
This perl code sets up the problem.BEGIN_PGML Set up and evaluate an integral for the volume of the solid of revolution obtained by rotating the region bounded by [`y = [$f]`] and [`y = [$g]`] about the [`x`]-axis. [$integral]* END_PGML
Statement
This is the problem statement in PGML.ANS($upper->cmp); ANS($lower->cmp); ANS($int->cmp->withPostFilter(AnswerHints( Formula('pi x - pi x^2 dx') => "Don't forget to multiply every term in the integrand by dx", Formula('pi x - pi x^2') => "Don't forget the differential dx", Formula('(pi x^2 - pi x)*dx') => 'Is the parabola above the line?', Formula('pi x^2 - pi x') => 'Is the parabola above the line?', ))); ANS($vol->cmp);
Answer
This is used for answer checking.BEGIN_PGML_SOLUTION Solution explanation goes here. END_PGML_SOLUTION COMMENT('Gives full credit only if all answers are correct.'); ENDDOCUMENT();
Solution
A solution should be provided here.