Setting up double integrals
Download file: DoubleIntegral.pg
DOCUMENT(); loadMacros('PGstandard.pl', 'PGML.pl', 'parserMultiAnswer.pl', 'PGcourse.pl');
Preamble
Since there are multiple answer blanks that are dependent upon each other, we use parserMultiAnswer.pl
.
Context()->variables->are( x => 'Real', dx => 'Real', y => 'Real', dy => 'Real' ); Context()->flags->set(reduceConstants => 0); # limits of integration $a = random(1, 5, 1); $b = $a + random(1, 4, 1); do { $c = random(1, 5, 1); } until ($c != $a); do { $d = $c + random(1, 4, 1); } until ($d != $b); # integrand and volume $f = Formula('x * y'); $V = Formula("($b^2-$a^2) * ($d^2-$c^2) / 4"); # differentials and limits of integration # Case 0, element 0 of each array below, is if the order of integration is dx dy # Case 1, element 1 of each array below, is if the order of integration is dy dx # 'id' and 'od' stand for inner and outer differential @id = (Formula('dx'), Formula('dy')); # (case 0, case 1) @od = (Formula('dy'), Formula('dx')); # (case 0, case 1) # A = outer integral, lower limit # B = outer integral, upper limit # C = inner integral, lower limit # D = inner integral, upper limit @A = (Formula($c), Formula($a)); # (case 0, case 1) @B = (Formula($d), Formula($b)); # (case 0, case 1) @C = (Formula($a), Formula($c)); # (case 0, case 1) @D = (Formula($b), Formula($d)); # (case 0, case 1) $multians = MultiAnswer($f, $id[0], $od[0], $A[0], $B[0], $C[0], $D[0])->with( singleResult => 1, checker => sub { my ($correct, $student, $self) = @_; my ($fstu, $idstu, $odstu, $Astu, $Bstu, $Cstu, $Dstu) = @{$student}; if ( ( $f == $fstu && $id[0] == $idstu && $od[0] == $odstu && $A[0] == $Astu && $B[0] == $Bstu && $C[0] == $Cstu && $D[0] == $Dstu ) || ($f == $fstu && $id[1] == $idstu && $od[1] == $odstu && $A[1] == $Astu && $B[1] == $Bstu && $C[1] == $Cstu && $D[1] == $Dstu) ) { return 1; } elsif ( ( $f == $fstu && $id[0] == $idstu && $od[0] == $odstu && ($A[0] != $Astu || $B[0] != $Bstu) && $C[0] == $Cstu && $D[0] == $Dstu ) || ($f == $fstu && $id[1] == $idstu && $od[1] == $odstu && ($A[1] != $Astu || $B[1] != $Bstu) && $C[1] == $Cstu && $D[1] == $Dstu) || ($f == $fstu && $id[0] == $idstu && $od[0] == $odstu && $A[0] == $Astu && $B[0] == $Bstu && ($C[0] != $Cstu || $D[0] != $Dstu)) || ($f == $fstu && $id[1] == $idstu && $od[1] == $odstu && $A[1] == $Astu && $B[1] == $Bstu && ($C[1] != $Cstu || $D[1] != $Dstu)) ) { $self->setMessage(1, 'Check your limits of integration.'); return 0.94; } elsif ( ( $f == $fstu && $id[0] == $idstu && $od[0] == $odstu && ($A[0] != $Astu || $B[0] != $Bstu) && ($C[0] != $Cstu || $D[0] != $Dstu) ) || ($f == $fstu && $id[1] == $idstu && $od[1] == $odstu && ($A[1] != $Astu || $B[1] != $Bstu) && ($C[1] != $Cstu || $D[1] != $Dstu)) ) { $self->setMessage(1, 'Check your limits of integration and order of integration.' ); return 0.47; } else { return 0; } } );
Setup
There are two separate cases: integrating with respect to dx dy (which we call case 0) or with respect to dy dx (which we call case 1). The zeroth and first entries in each of the arrays @id, @od, @A, @B, @C, @D
hold the values for case 0 and case 1, respectively. We used constant limits of integration to keep this example easy to follow, but we encourage you to write questions over non-rectangular regions.
The $multians
object has been compartmentalized, so you shouldn’t need to change it unless you want to fiddle with the weighted score for each answer blank (by changing the return values). The return values are set so that the percentages come out nicely.
BEGIN_PGML Set up a double integral in rectangular coordinates for calculating the volume of the solid under the graph of the function [`f(x,y) = [$f]`] over the region [`[$a] \leq x \leq [$b]`] and [`[$c] \leq y \leq [$d]`]. _Instructions:_ Please enter the integrand in the first answer box . Depending on the order of integration you choose, enter _dx_ and _dy_ in either order into the second and third answer boxes with only one _dx_ or _dy_ in each box . Then, enter the limits of integration and evaluate the integral to find the volume. [``\int_A^B \int_C^D``] [_]{$multians}{10} [_]{$multians}{5} [_]{$multians}{5} A = [_]{$multians}{10} B = [_]{$multians}{10} C = [_]{$multians}{10} D = [_]{$multians}{10} Volume = [_]{$V}{10} END_PGML
Statement
The only interesting thing to note here is that you must use $multians
for each answer blank (except the last one, which is independent.)
BEGIN_PGML_SOLUTION Solution explanation goes here. END_PGML_SOLUTION COMMENT('Allows integration in either order.'); ENDDOCUMENT();
Solution
A solution should be provided here.