Adding the Heaviside function to the context.
Download file: HeavisideStep.pg
DOCUMENT(); loadMacros('PGstandard.pl', 'PGML.pl', 'parserFunction.pl', 'PGcourse.pl');
Preamble
We load parserFunction.pl
to make adding a named function to the context easier. Please see the POD documentation parserFunction.pl
.
Context()->variables->are(t => 'Real'); Context()->functions->add( step => { class => 'Parser::Legacy::Numeric', perl => 'Parser::Legacy::Numeric::do_step' }, ); parserFunction('u(t)' => 'step(t)'); $a = random(3, 6); $f = Formula("5 u(t-$a)"); $answer1 = List($f->eval(t => $a - 1), $f->eval(t => $a), $f->eval(t => $a + 1)); $answer2 = $f->with( limits => [ $a - 5, $a + 5 ], test_at => [ [ $a - 1 ], [ $a - 0.0000001 ], [$a], [ $a + 0.0000001 ], [ $a + 1 ] ], num_points => 10, );
Setup
We add the step function to the context with the name step
. The function step(t)
is the Heaviside function and takes the value 1 when t > 0, and the value 0 when t ≤ 0. We will use the function step
when evaluating the Heaviside function to obtain an answer that is a number.
For more details on adding the Heaviside function to the context, see the forum discussion on the Heaviside step function.
For the second question, since answers are checked numerically by comparing the student answer to the correct answer at several randomly points in the domain (the default is 5 points) in an interval (the default is [-1,1]
), the function step(t) = u(t)
is not very robust when checking answers using these defaults. For example, if a student types in the answer u(t-0.1)
and the correct answer is u(t), there is a good chance that the student’s answer will be marked correct, since the probability that a test point was chosen in the interval (0,0.1) is much less than 100%. Also, if the correct answer were u(t-5), then a student could enter the answer 0 and be marked correct because the correct answer is identically zero on the interval [-1,1]
.
To make the answer checking robust, in $answer2
we specify a larger domain centered at $a
using limits, we require four of the test points always be used, and that there should be 10 test points total (the four we specified and six others generated at random). Notice that we used the construction $f->with(...)
to do this (using $f->{test_at} = [[1],[2]]
would generate an error because the functions we added to the context aren’t “blessed” with enough permissions to modify $f
in that way).
In part (b), since the students never actually see the values of the function u(t), we could have defined the function as
"u(t)" => "1.5 * sin(e*t) + 5*pi/3 + arctan(t)"); parserFunction(
If we had defined u(t)
this way, we would not have had to add the function step(t)
to the context and we could have used the defaults for the answer checker. Notice that the function u(t)
is never zero, is not constant, is differentiable, and takes moderately sized values, which makes its answer checking very robust using the defaults for the answer checker. Further, because of the arctangent, it is not periodic and so u(t)-u(t-a)
should never be identically zero. Also, the formula for u(t)
is not something students are likely to input as an answer out of nowhere. The function u(t)
is great as a named function that stands in for the Heaviside function when the answer is a function. However, if the answer is a number obtained by evaluating the Heaviside function, then step(t) should be used or the function u(t)
should be properly defined as the Heaviside function for obvious reasons.
BEGIN_PGML Let [`u(t)`] be the Heaviside step function defined by [`` u(t) = \left\{ \begin{array}{lcl} 0 && \text{ if } x \leq 0, \\ 1 && \text{ if } x > 0. \end{array} \right. ``] a. Evaluate the function [`[$f]`] when [`t`] is [`[$a - 1]`], [`[$a]`], and [`[$a + 1]`] and enter your answers as a comma separated list. + [_]{ $answer1->cmp(ordered => 1) }{15} b. Suppose the answer is the function [`[$f]`]. + [_]{$answer2}{15} END_PGML
Statement
This is the problem statement in PGML.BEGIN_PGML_SOLUTION Solution explanation goes here. END_PGML_SOLUTION ENDDOCUMENT();
Solution
A solution should be provided here.